# Prim’s Minimum Spanning Tree (MST) | Greedy Algo | Factsprime

### Write a Modular C Programming code for ‎Prim’s Minimum Spanning Tree (MST) | Greedy Algo DSA

Prim’s algorithm always starts with a single node and it moves through several adjacent nodes, in order to explore all of the connected edges along the way.

CODE:

```#include<stdio.h>
#include<stdlib.h>
#include<limits.h>
#include<stdbool.h>

#define V 5
#define INF INT_MAX

int minKey(int key[], bool mstSet[])
{
int min = INF, min_index;

for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;

return min_index;
}

void printMST(int parent[], int graph[V][V])
{
printf("Edge \tWeight\n");
for (int i = 1; i < V; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}

void primMST(int graph[V][V])
{
int parent[V];
int key[V];
bool mstSet[V];

for (int i = 0; i < V; i++)
key[i] = INF, mstSet[i] = false;

key = 0;
parent = -1;

for (int count = 0; count < V - 1; count++)
{
int u = minKey(key, mstSet);

mstSet[u] = true;

for (int v = 0; v < V; v++)

if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}

printMST(parent, graph);
}

int main()
{
int graph[V][V] = {{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}};

primMST(graph);

return 0;
}

```

OUTPUT

```Edge    Weight
0 - 1   2
1 - 2   3
0 - 3   6
1 - 4   5```

Please find some more codes of Loops, Condition Statements, 1D Arrays, 2D Arrays, Strings, Pointers, Data Structures, Files, Linked lists, Stacks, Queues, Binary Trees, MISC, Solved model question papers & Hacker Rank all solutions on the below page:

Top 100+ C Programming codes – KLE Technological University 